Using differentials, find the approximate value of the following up to 3 places of decimal.
(0.009)13
(0.009)13
Consider f(x)=x13⇒f′(x)=13x−23
Let x=0.008 and Δx=0.001
Now, f(x+Δx)≃f(x)+Δxf′(x)⇒(x+Δx)13≃x13+13x23×Δx⇒(0.008+0.001)13≃(0.008)13+0.0013(0.008)23=0.2+0.0013{(0.2)3}23=0.2+0.0013×(0.2)2=0.208⇒(0.009)13≃0.208