Using differentials, find the approximate value of the following up to 3 places of decimal.
(0.999)110
(0.999)110Considerf(x)=x110,Letx=1 and Δx=−0.001f′(x)=110x−910Now,f(x+Δx)≃f(x)+Δxf′(x)⇒(x+Δx)110≃x110+110x910×Δx⇒(1−0.001)110≃(1)110+(−0.001)10(1)910=1−0.00110×1=1−0.0001=0.9999∴(0.999)110=0.9999