wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Using differentials, find the approximate values of the following:

(i) 25.02

(ii) (0.009)1/3

(iii) (0.007)1/3

(iv) 401

(v) (15)1/4

(vi) (255)1/4

(vii) 1(2.002)2

(viii) loge 4.04, it being given that log10 4 = 0.6021 and log10 e = 0.4343.

(ix) loge 10.02, it being given that loge 10 = 2.3026.

(x) log10 10.1, it being given that log10 e = 0.4343.

(xi) cos 61°, it being given that sin 60° = 0.86603 and 1° = 0.01745 radian.

(xii) 125.1

(xiii) sin2214

(xiv) cos11π36

(xv) (80)1/4

(xvi) (29)1/3

(xvii) (66)1/3

(xviii) 26

(xix) 37

(xx) 0.48

(xxi) (82)1/4

(xxii) 17811/4

(xxiii) (33)1/5

(xxiv) 36.6

(xxv) 251/3

Open in App
Solution

(i)
Consider the function y=fx=x.Let: x =25 x+x=25.02Then,x=0.02For x=25, y=25=5Let: dx=x=0.02Now, y=xdydx=12xdydxx=25=110 y=dy=dydxdx=110×0.02=0.002y=0.002 25.02=y+y=5.002

(ii)
Consider the function y=fx=x3.Let: x =0.008x+x=0.009Then, x=0.001For x=0.008, y=0.008=0.2Let: dx=x=0.001Now, y=x3dydx=13x23dydxx=0.008=13×0.04=10.12y=dy=dydxdx=10.12×0.001=1120y=1120=0.008333 0.00913=y+y=0.208333

(iii)
Consider the function y=fx=x.3Let: x =0.008 x+x=0.007Then, x=-0.001For x=0.008, y=0.008=0.2Let: dx=x=-0.001Now, y=x3dydx=13x23dydxx=0.008=13×0.04=10.12 y=dy=dydxdx=10.12×0.001=1120y=1120=0.008333 0.00713=y+y=0.191667

(iv).
Consider the function y=fx=x.Let: x =400 x+x=401Then, x=1For x=400, y=400=20Let: dx=x=1Now, y=xdydx=12xdydxx=400=140 y=dy=dydxdx=140×1=140y=140=0.025 401=y+y=20.025

(v)
Consider the function y=fx=x14.Let: x =16 x+x=15Then, x=-1For x=16, y=1614=2Let: dx=x=-1Now, y=x14dydx=14x34dydxx=16=132 y=dy=dydxdx=132×-1=-132y=-132=-0.03125 1514=y+y=1.96875

(vi)
Consider the function y=fx=x14.Let: x =256x+x=255Then, x=-1For x=256, y=25614=4Let: dx=x=-1Now, y=x14dydx=14x34dydxx=256=1256y=dy=dydxdx=1256×-1=-1256y=-1256=-0.003906 25514=y+y=3.996093.9961

(vii)
Consider the function y=fx=1x2.Let: x =2 x+x=2.002Then, x=-0.002For x=2 , y=122=14Let: dx=x=0.002Now, y=1x2dydx=2x3dydxx=2=14 y=dy=dydxdx=14×-0.002=-0.0005y=-0.0005 12.0022=y+y=0.2495

(viii)
Consider the function y=fx= logex.Let: x = 4 x+x= 4.04Then, x=0.04For x=4, y=loge4=log104log10e=0.60210.4343=1.386368Let: dx=x=0.04Now, y=logexdydx=1xdydxx= 4=14 y=dy=dydxdx=14×0.04=0.01y=0.01 loge4.04=y+y=1.396368

(ix)
Consider the function y=fx=logex.Let: x =10 x+x=10.02Then, x=0.02For x= , y=loge10=2.3026Let: dx=x=0.02Now, y=logexdydx=1xdydxx=10=110 y=dy=dydxdx=110×0.02=0.002y=0.002 loge10.02=y+y=2.3046

(x)
Consider the function y=fx=log10x.Let: x =10 x+x=10.1Then, x=0.1For x= , y=log1010=1Let: dx=x=0.1Now, y=log10x=logexloge10dydx=12.3025xdydxx=10=0.04343 y=dy=dydxdx=0.04343×0.1=0.004343y=0.004343 log1010.1=y+y=1.004343

(xi)
Consider the function y=fx=cos x°.Let: x =60° x+x=61°Then, x=1°=0.01745For x=60°, y=cos 60°=0.5Let: dx=x=0.01745Now, y=cos xdydx=-sin xdydxx=60=-0.86603 y=dy=dydxdx=-0.86603×0.01745=-0.01511y=-0.01511 cos 61°=y+y=0.484880.48489

(xii)
Consider the function y=fx=1x.Let: x =25 x+x=25.1Then, x=0.1For x= , y=125=0.2Let: dx=x=0.1Now, y=1xdydx=-12x32dydxx=25=-0.004 y=dy=dydxdx=-0.004×0.1=-0.0004y=-0.0004 125.1=y+y=0.1996

(xiii)
Consider the function y=fx=sin x.Let: x =227 x+x=2214Then, x=-2214For x=π, y=sin 227=0Let: dx=x=sin -2214=-sin π2=-1Now, y=sin xdydx=cos xdydxx=227=-1 y=dy=dydxdx=-1×-1=1y=1 sin 2214=y+y=1

(xiv)
Consider the function y=fx=cos x.Let: x =π3 x+x=11π36Then, x=-π36=-5°For x=π3, y=cos π3=0.5Let: dx=x=-sin 5°=-0.08716Now, y=cos xdydx=-sin xdydxx=π3=-0.86603 y=dy=dydxdx=-0.86603×-0.08716=0.075575y=0.075575 cos11π36=y+y=0.5+0.075575=0.575575

(xv)
Consider the function y=fx=x14.Let: x =81 x+x=80Then, x=-1For x=81, y=8114=3Let: dx=x=-1Now, y=x14dydx=14x34dydxx=81=1108 y=dy=dydxdx=1108×-1=-0.009259y=-0.009259 8014=y+y=2.99074

(xvi)

Consider the function y=fx=x13.Let: x =27 x+x=29Then, x=2For x=27, y=2713=3Let: dx=x=2Now, y=x13dydx=13x23dydxx=27=127 y=dy=dydxdx=127×2=0.074y=0.074 2913=y+y=3.074

(xvii)
Consider the function y=fx=x13.Let: x =64 x+x=66Then, y=x=2For x=64, y=6413=4Let: dx=y=x=2Now, y=x13dydx=13x23dydxx=4=148 y=dy=dydxdx=148×2=0.04166y=0.04166 6613=y+y=4.0416

(xviii)
Consider the function y=fx=x.Let: x =25x+x=26Then, x=1For x=25, y=25=5Let: dx=x=1Now, y=x1/2dydx=12xdydxx=25=110 y=dy=dydxdx=110×1=0.1y=0.1 26=y+y=5.1

(xix)
Consider the function y=fx=x.Let: x =36 x+x=37Then, x=1For x=36, y=36=6Let: dx=x=1Now, y=x12dydx=12xdydxx=36=112 y=dy=dydxdx=112×1=0.0833y=0.0833 37=y+y=6.0833

(xx)
Consider the function y=fx=x.Let: x =0.49 x+x=0.48Then, x=-0.01For x=0.49, y=0.49=0.7Let: dx=x=0.01Now, y=x12dydx=12xdydxx=0.49=11.4 y=dy=dydxdx=11.4×-0.01=-0.007143y=-0.007143 0.48=y+y=0.693

(xxi)
Consider the function y=fx=x14.Let: x =81 x+x=82Then, x=1For x=81, y=8114=3Let: dx=x=1Now, y=x14dydx=14x34dydxx=81=1108 y=dy=dydxdx=1108×1=0.009259y=0.009259 8214=y+y=3.009259

(xxii)
Consider the function y=fx=x14.Let: x =1681 x+x=1781Then, x=181For x=1681, y=168114=23Let: dx=x=181Now, y=x14dydx=14x34dydxx=1681=2732 y=dy=dydxdx=2732×181=196=0.01042y=0.01042 178114=y+y=0.6771

(xxiii)
Consider the function y=fx=x15.Let: x =32 x+x=33Then, x=1For x=33, y=3215=2Let: dx=x=1Now, y=x15dydx=15x45dydxx=32=180 y=dy=dydxdx=180×1=0.0125y=0.0125 3315=y+y=2.0125Disclaimer: This solution has been created according to the question given in the book. However, the solution given in the book is incorrect.

(xxiv)
Consider the function y=fx=x.Let: x =36x+x=36.6Then, x=0.6For x=36, y=36=6Let: dx=x=0.6Now, y=x12dydx=12xdydxx=36=112 y=dy=dydxdx=112×0.6=0.05y=0.05 36.6=y+y=6.05

(xv)
Consider the function y=fx=x13.Let: x =27 x+x=25Then, x=-2For x=27, y=2713=3Let: dx=x=-2Now, y=x13dydx=13x23dydxx=27=127 y=dy=dydxdx=127×-2=-0.07407y=-0.07407 2513=y+y=2.9259

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon