4
You visited us
4
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
First Derivative Test for Local Maximum
Using differe...
Question
Using differentials, find the approximate values of the following:
(i)
25
.
02
(ii)
0
.
009
1
3
(iii)
0
.
007
1
3
(iv)
401
(v)
15
1
4
(vi)
255
1
4
(vii)
1
(
2
.
002
)
2
(viii) log
e
4.04, it being given that log
10
4 = 0.6021 and log
10
e
= 0.4343
(ix) log
e
10.02, it being given that log
e
10 = 2.3026
(x) log
10
10.1, it being given that log
10
e
= 0.4343
(xi) cos 61°, it being given that sin60° = 0.86603 and 1° = 0.01745 radian
(xii)
1
25
.
1
(xiii)
sin
22
14
(xiv)
cos
11
π
36
(xv)
80
1
4
(xvi)
29
1
3
(xvii)
66
1
3
(xviii)
26
[CBSE 2000]
(xix)
37
[CBSE 2000]
(xx)
0
.
48
[CBSE 2002C]
(xxi)
82
1
4
[CBSE 2005]
(xxii)
17
81
1
4
(xxiii)
33
1
5
(xxiv)
36
.
6
(xxv)
25
1
3
(xxvi)
49
.
5
[CBSE 2012]
(xxvii)
3
.
968
3
2
[CBSE 2014]
(xxviii)
1
.
999
5
[NCERT EXEMPLAR]
(xxix)
0
.
082
[NCERT EXEMPLAR]
Open in App
Solution
(i)
Consider
the
function
y
=
f
x
=
x
.
Let
:
x
=
25
x
+
∆
x
=
25
.
02
Then
,
∆
x
=
0
.
02
For
x
=
25
,
y
=
25
=
5
Let
:
d
x
=
∆
x
=
0
.
02
Now
,
y
=
x
⇒
d
y
d
x
=
1
2
x
⇒
d
y
d
x
x
=
25
=
1
10
∴
∆
y
=
d
y
=
d
y
d
x
d
x
=
1
10
×
0
.
02
=
0
.
002
⇒
∆
y
=
0
.
002
∴
25
.
02
=
y
+
∆
y
=
5
.
002
(ii)
Consider
the
function
y
=
f
x
=
x
3
.
Let
:
x
=
0
.
008
x
+
∆
x
=
0
.
009
Then
,
∆
x
=
0
.
001
For
x
=
0
.
008
,
y
=
0
.
008
=
0
.
2
Let
:
d
x
=
∆
x
=
0
.
001
Now
,
y
=
x
3
⇒
d
y
d
x
=
1
3
x
2
3
⇒
d
y
d
x
x
=
0
.
008
=
1
3
×
0
.
04
=
1
0
.
12
∴
∆
y
=
d
y
=
d
y
d
x
d
x
=
1
0
.
12
×
0
.
001
=
1
120
⇒
∆
y
=
1
120
=
0
.
008333
∴
0
.
009
1
3
=
y
+
∆
y
=
0
.
208333
(iii)
Consider
the
function
y
=
f
x
=
x
.
3
Let
:
x
=
0
.
008
x
+
∆
x
=
0
.
007
Then
,
∆
x
=
-
0
.
001
For
x
=
0
.
008
,
y
=
0
.
008
=
0
.
2
Let
:
d
x
=
∆
x
=
-
0
.
001
Now
,
y
=
x
3
⇒
d
y
d
x
=
1
3
x
2
3
⇒
d
y
d
x
x
=
0
.
008
=
1
3
×
0
.
04
=
1
0
.
12
∴
∆
y
=
d
y
=
d
y
d
x
d
x
=
1
0
.
12
×
0
.
001
=
1
120
⇒
∆
y
=
1
120
=
0
.
008333
∴
0
.
007
1
3
=
y
+
∆
y
=
0
.
191667
(iv).
Consider
the
function
y
=
f
x
=
x
.
Let
:
x
=
400
x
+
∆
x
=
401
Then
,
∆
x
=
1
For
x
=
400
,
y
=
400
=
20
Let
:
d
x
=
∆
x
=
1
Now
,
y
=
x
⇒
d
y
d
x
=
1
2
x
⇒
d
y
d
x
x
=
400
=
1
40
∴
∆
y
=
d
y
=
d
y
d
x
d
x
=
1
40
×
1
=
1
40
⇒
∆
y
=
1
40
=
0
.
025
∴
401
=
y
+
∆
y
=
20
.
025
(v)
Consider
the
function
y
=
f
x
=
x
1
4
.
Let
:
x
=
16
x
+
∆
x
=
15
Then
,
∆
x
=
-
1
For
x
=
16
,
y
=
16
1
4
=
2
Let
:
d
x
=
∆
x
=
-
1
Now
,
y
=
x
1
4
⇒
d
y
d
x
=
1
4
x
3
4
⇒
d
y
d
x
x
=
16
=
1
32
∴
∆
y
=
d
y
=
d
y
d
x
d
x
=
1
32
×
-
1
=
-
1
32
⇒
∆
y
=
-
1
32
=
-
0
.
03125
∴
15
1
4
=
y
+
∆
y
=
1
.
96875
(vi)
Consider
the
function
y
=
f
x
=
x
1
4
.
Let
:
x
=
256
x
+
∆
x
=
255
Then
,
∆
x
=
-
1
For
x
=
256
,
y
=
256
1
4
=
4
Let
:
d
x
=
∆
x
=
-
1
Now
,
y
=
x
1
4
⇒
d
y
d
x
=
1
4
x
3
4
⇒
d
y
d
x
x
=
256
=
1
256
∴
∆
y
=
d
y
=
d
y
d
x
d
x
=
1
256
×
-
1
=
-
1
256
⇒
∆
y
=
-
1
256
=
-
0
.
003906
∴
255
1
4
=
y
+
∆
y
=
3
.
99609
≈
3
.
9961
(vii)
Consider
the
function
y
=
f
x
=
1
x
2
.
Let
:
x
=
2
x
+
∆
x
=
2
.
002
Then
,
∆
x
=
-
0
.
002
For
x
=
2
,
y
=
1
2
2
=
1
4
Let
:
d
x
=
∆
x
=
0
.
002
Now
,
y
=
1
x
2
⇒
d
y
d
x
=
2
x
3
⇒
d
y
d
x
x
=
2
=
1
4
∴
∆
y
=
d
y
=
d
y
d
x
d
x
=
1
4
×
-
0
.
002
=
-
0
.
0005
⇒
∆
y
=
-
0
.
0005
∴
1
2
.
002
2
=
y
+
∆
y
=
0
.
2495
(viii)
Consider
the
function
y
=
f
x
=
log
e
x
.
Let
:
x
=
4
x
+
∆
x
=
4
.
04
Then
,
∆
x
=
0
.
04
For
x
=
4
,
y
=
log
e
4
=
log
10
4
log
10
e
=
0
.
6021
0
.
4343
=
1
.
386368
Let
:
d
x
=
∆
x
=
0
.
04
Now
,
y
=
log
e
x
⇒
d
y
d
x
=
1
x
⇒
d
y
d
x
x
=
4
=
1
4
∴
∆
y
=
d
y
=
d
y
d
x
d
x
=
1
4
×
0
.
04
=
0
.
01
⇒
∆
y
=
0
.
01
∴
log
e
4
.
04
=
y
+
∆
y
=
1
.
396368
(ix)
Consider
the
function
y
=
f
x
=
log
e
x
.
Let
:
x
=
10
x
+
∆
x
=
10
.
02
Then
,
∆
x
=
0
.
02
For
x
=
,
y
=
log
e
10
=
2
.
3026
Let
:
d
x
=
∆
x
=
0
.
02
Now
,
y
=
log
e
x
⇒
d
y
d
x
=
1
x
⇒
d
y
d
x
x
=
10
=
1
10
∴
∆
y
=
d
y
=
d
y
d
x
d
x
=
1
10
×
0
.
02
=
0
.
002
⇒
∆
y
=
0
.
002
∴
log
e
10
.
02
=
y
+
∆
y
=
2
.
3046
(x)
Consider
the
function
y
=
f
x
=
log
10
x
.
Let
:
x
=
10
x
+
∆
x
=
10
.
1
Then
,
∆
x
=
0
.
1
For
x
=
,
y
=
log
10
10
=
1
Let
:
d
x
=
∆
x
=
0
.
1
Now
,
y
=
log
10
x
=
log
e
x
log
e
10
⇒
d
y
d
x
=
1
2
.
3025
x
⇒
d
y
d
x
x
=
10
=
0
.
04343
∴
∆
y
=
d
y
=
d
y
d
x
d
x
=
0
.
04343
×
0
.
1
=
0
.
004343
⇒
∆
y
=
0
.
004343
∴
log
10
10
.
1
=
y
+
∆
y
=
1
.
004343
(xi)
Consider
the
function
y
=
f
x
=
cos
x
°
.
Let
:
x
=
60
°
x
+
∆
x
=
61
°
Then
,
∆
x
=
1
°
=
0
.
01745
For
x
=
60
°
,
y
=
cos
60
°
=
0
.
5
Let
:
d
x
=
∆
x
=
0
.
01745
Now
,
y
=
cos
x
⇒
d
y
d
x
=
-
sin
x
⇒
d
y
d
x
x
=
60
=
-
0
.
86603
∴
∆
y
=
d
y
=
d
y
d
x
d
x
=
-
0
.
86603
×
0
.
01745
=
-
0
.
01511
⇒
∆
y
=
-
0
.
01511
∴
cos
61
°
=
y
+
∆
y
=
0
.
48488
≈
0
.
48489
(xii)
Consider
the
function
y
=
f
x
=
1
x
.
Let
:
x
=
25
x
+
∆
x
=
25
.
1
Then
,
∆
x
=
0
.
1
For
x
=
,
y
=
1
25
=
0
.
2
Let
:
d
x
=
∆
x
=
0
.
1
Now
,
y
=
1
x
⇒
d
y
d
x
=
-
1
2
x
3
2
⇒
d
y
d
x
x
=
25
=
-
0
.
004
∴
∆
y
=
d
y
=
d
y
d
x
d
x
=
-
0
.
004
×
0
.
1
=
-
0
.
0004
⇒
∆
y
=
-
0
.
0004
∴
1
25
.
1
=
y
+
∆
y
=
0
.
1996
(xiii)
Consider
the
function
y
=
f
x
=
sin
x
.
Let
:
x
=
22
7
x
+
∆
x
=
22
14
Then
,
∆
x
=
-
22
14
For
x
=
π
,
y
=
sin
22
7
=
0
Let
:
d
x
=
∆
x
=
sin
-
22
14
=
-
sin
π
2
=
-
1
Now
,
y
=
sin
x
⇒
d
y
d
x
=
cos
x
⇒
d
y
d
x
x
=
22
7
=
-
1
∴
∆
y
=
d
y
=
d
y
d
x
d
x
=
-
1
×
-
1
=
1
⇒
∆
y
=
1
∴
sin
22
14
=
y
+
∆
y
=
1
(xiv)
Consider
the
function
y
=
f
x
=
cos
x
.
Let
:
x
=
π
3
x
+
∆
x
=
11
π
36
Then
,
∆
x
=
-
π
36
=
-
5
°
For
x
=
π
3
,
y
=
cos
π
3
=
0
.
5
Let
:
d
x
=
∆
x
=
-
sin
5
°
=
-
0
.
08716
Now
,
y
=
cos
x
⇒
d
y
d
x
=
-
sin
x
⇒
d
y
d
x
x
=
π
3
=
-
0
.
86603
∴
∆
y
=
d
y
=
d
y
d
x
d
x
=
-
0
.
86603
×
-
0
.
08716
=
0
.
075575
⇒
∆
y
=
0
.
075575
∴
cos
11
π
36
=
y
+
∆
y
=
0
.
5
+
0
.
075575
=
0
.
575575
(xv)
Consider
the
function
y
=
f
x
=
x
1
4
.
Let
:
x
=
81
x
+
∆
x
=
80
Then
,
∆
x
=
-
1
For
x
=
81
,
y
=
81
1
4
=
3
Let
:
d
x
=
∆
x
=
-
1
Now
,
y
=
x
1
4
⇒
d
y
d
x
=
1
4
x
3
4
⇒
d
y
d
x
x
=
81
=
1
108
∴
∆
y
=
d
y
=
d
y
d
x
d
x
=
1
108
×
-
1
=
-
0
.
009259
⇒
∆
y
=
-
0
.
009259
∴
80
1
4
=
y
+
∆
y
=
2
.
99074
(xvi)
Consider
the
function
y
=
f
x
=
x
1
3
.
Let
:
x
=
27
x
+
∆
x
=
29
Then
,
∆
x
=
2
For
x
=
27
,
y
=
27
1
3
=
3
Let
:
d
x
=
∆
x
=
2
Now
,
y
=
x
1
3
⇒
d
y
d
x
=
1
3
x
2
3
⇒
d
y
d
x
x
=
27
=
1
27
∴
∆
y
=
d
y
=
d
y
d
x
d
x
=
1
27
×
2
=
0
.
074
⇒
∆
y
=
0
.
074
∴
29
1
3
=
y
+
∆
y
=
3
.
074
(xvii)
Consider
the
function
y
=
f
x
=
x
1
3
.
Let
:
x
=
64
x
+
∆
x
=
66
Then
,
∆
x
=
2
For
x
=
64
,
y
=
64
1
3
=
4
Let
:
d
x
=
∆
x
=
2
Now
,
y
=
x
1
3
⇒
d
y
d
x
=
1
3
x
2
3
⇒
d
y
d
x
x
=
64
=
1
48
∴
∆
y
=
d
y
=
d
y
d
x
d
x
=
1
48
×
2
=
0
.
042
⇒
∆
y
=
0
.
042
∴
66
1
3
=
y
+
∆
y
=
4
.
042
(xviii)
Consider
the
function
y
=
f
x
=
x
.
Let
:
x
=
25
x
+
∆
x
=
26
Then
,
∆
x
=
1
For
x
=
25
,
y
=
25
=
5
Let
:
d
x
=
∆
x
=
1
Now
,
y
=
x
1
/
2
⇒
d
y
d
x
=
1
2
x
⇒
d
y
d
x
x
=
25
=
1
10
∴
∆
y
=
d
y
=
d
y
d
x
d
x
=
1
10
×
1
=
0
.
1
⇒
∆
y
=
0
.
1
∴
26
=
y
+
∆
y
=
5
.
1
(xix)
Consider
the
function
y
=
f
x
=
x
.
Let
:
x
=
36
x
+
∆
x
=
37
Then
,
∆
x
=
1
For
x
=
36
,
y
=
36
=
6
Let
:
d
x
=
∆
x
=
1
Now
,
y
=
x
1
2
⇒
d
y
d
x
=
1
2
x
⇒
d
y
d
x
x
=
36
=
1
12
∴
∆
y
=
d
y
=
d
y
d
x
d
x
=
1
12
×
1
=
0
.
0833
⇒
∆
y
=
0
.
0833
∴
37
=
y
+
∆
y
=
6
.
0833
(xx)
Consider
the
function
y
=
f
x
=
x
.
Let
:
x
=
0
.
49
x
+
∆
x
=
0
.
48
Then
,
∆
x
=
-
0
.
01
For
x
=
0
.
49
,
y
=
0
.
49
=
0
.
7
Let
:
d
x
=
∆
x
=
0
.
01
Now
,
y
=
x
1
2
⇒
d
y
d
x
=
1
2
x
⇒
d
y
d
x
x
=
0
.
49
=
1
1
.
4
∴
∆
y
=
d
y
=
d
y
d
x
d
x
=
1
1
.
4
×
-
0
.
01
=
-
0
.
007143
⇒
∆
y
=
-
0
.
007143
∴
0
.
48
=
y
+
∆
y
=
0
.
693
(xxi)
Consider
the
function
y
=
f
x
=
x
1
4
.
Let
:
x
=
81
x
+
∆
x
=
82
Then
,
∆
x
=
1
For
x
=
81
,
y
=
81
1
4
=
3
L
e
t
:
d
x
=
∆
x
=
1
Now
,
y
=
x
1
4
⇒
d
y
d
x
=
1
4
x
3
4
⇒
d
y
d
x
x
=
81
=
1
108
∴
∆
y
=
d
y
=
d
y
d
x
d
x
=
1
108
×
1
=
0
.
009259
⇒
∆
y
=
0
.
009259
∴
82
1
4
=
y
+
∆
y
=
3
.
009259
(xxii)
Consider
the
function
y
=
f
x
=
x
1
4
.
Let
:
x
=
16
81
x
+
∆
x
=
17
81
Then
,
∆
x
=
1
81
For
x
=
16
81
,
y
=
16
81
1
4
=
2
3
Let
:
d
x
=
∆
x
=
1
81
Now
,
y
=
x
1
4
⇒
d
y
d
x
=
1
4
x
3
4
⇒
d
y
d
x
x
=
16
81
=
27
32
∴
∆
y
=
d
y
=
d
y
d
x
d
x
=
27
32
×
1
81
=
1
96
=
0
.
01042
⇒
∆
y
=
0
.
01042
∴
17
81
1
4
=
y
+
∆
y
=
0
.
6771
(xxiii)
Consider
the
function
y
=
f
x
=
x
1
5
.
Let
:
x
=
32
x
+
∆
x
=
33
Then
,
∆
x
=
1
For
x
=
33
,
y
=
32
1
5
=
2
Let
:
d
x
=
∆
x
=
1
Now
,
y
=
x
1
5
⇒
d
y
d
x
=
1
5
x
4
5
⇒
d
y
d
x
x
=
32
=
1
80
∴
∆
y
=
d
y
=
d
y
d
x
d
x
=
1
80
×
1
=
0
.
0125
⇒
∆
y
=
0
.
0125
∴
33
1
5
=
y
+
∆
y
=
2
.
0125
(xxiv)
Consider
the
function
y
=
f
x
=
x
.
Let
:
x
=
36
x
+
∆
x
=
36
.
6
Then
,
∆
x
=
0
.
6
For
x
=
36
,
y
=
36
=
6
Let
:
d
x
=
∆
x
=
0
.
6
Now
,
y
=
x
1
2
⇒
d
y
d
x
=
1
2
x
⇒
d
y
d
x
x
=
36
=
1
12
∴
∆
y
=
d
y
=
d
y
d
x
d
x
=
1
12
×
0
.
6
=
0
.
05
⇒
∆
y
=
0
.
05
∴
36
.
6
=
y
+
∆
y
=
6
.
05
(xv)
Consider
the
function
y
=
f
x
=
x
1
3
.
Let
:
x
=
27
x
+
∆
x
=
25
Then
,
△
x
=
-
2
For
x
=
27
,
y
=
27
1
3
=
3
Let
:
d
x
=
∆
x
=
-
2
Now
,
y
=
x
1
3
⇒
d
y
d
x
=
1
3
x
2
3
⇒
d
y
d
x
x
=
27
=
1
27
∴
∆
y
=
d
y
=
d
y
d
x
d
x
=
1
27
×
-
2
=
-
0
.
07407
⇒
∆
y
=
-
0
.
07407
∴
25
1
3
=
y
+
∆
y
=
2
.
9259
(xxvi)
Consider
the
function
y
=
f
x
=
x
.
Let
:
x
=
49
x
+
∆
x
=
49
.
5
Then
,
∆
x
=
0
.
5
For
x
=
49
,
y
=
49
=
7
Let
:
d
x
=
∆
x
=
0
.
5
Now
,
y
=
x
1
2
⇒
d
y
d
x
=
1
2
x
⇒
d
y
d
x
x
=
49
=
1
14
∴
∆
y
=
d
y
=
d
y
d
x
d
x
=
1
14
×
0
.
5
=
0
.
0357
⇒
∆
y
=
0
.
0357
∴
49
.
5
=
y
+
∆
y
=
7
.
0357
(xxvii)
Consider
the
function
y
=
f
x
=
x
3
2
.
Let
:
x
=
4
x
+
∆
x
=
3
.
968
Then
,
∆
x
=
-
0
.
032
For
x
=
4
,
y
=
4
3
2
=
8
Let
:
d
x
=
∆
x
=
-
0
.
032
Now
,
y
=
x
3
2
⇒
d
y
d
x
=
3
x
2
⇒
d
y
d
x
x
=
4
=
3
∴
∆
y
=
d
y
=
d
y
d
x
d
x
=
3
×
-
0
.
032
=
-
0
.
096
⇒
∆
y
=
-
0
.
096
∴
3
.
968
3
2
=
y
+
∆
y
=
7
.
904
(xxviii)
Consider
the
function
y
=
f
x
=
x
5
.
Let
:
x
=
2
x
+
∆
x
=
1
.
999
Then
,
∆
x
=
-
0
.
001
For
x
=
2
,
y
=
2
5
=
32
Let
:
d
x
=
∆
x
=
-
0
.
001
Now
,
y
=
x
5
⇒
d
y
d
x
=
5
x
4
⇒
d
y
d
x
x
=
2
=
80
∴
∆
y
=
d
y
=
d
y
d
x
d
x
=
80
×
-
0
.
001
=
-
0
.
08
⇒
∆
y
=
-
0
.
08
∴
1
.
999
5
=
y
+
∆
y
=
31
.
92
(xxix)
Consider
the
function
y
=
f
x
=
x
.
Let
:
x
=
0
.
0841
x
+
∆
x
=
0
.
082
Then
,
∆
x
=
-
0
.
0021
For
x
=
0
.
0841
,
y
=
0
.
0841
=
0
.
29
Let
:
d
x
=
∆
x
=
-
0
.
0021
Now
,
y
=
x
1
2
⇒
d
y
d
x
=
1
2
x
⇒
d
y
d
x
x
=
0
.
0841
=
1
0
.
58
=
50
29
∴
∆
y
=
d
y
=
d
y
d
x
d
x
=
50
29
×
-
0
.
0021
=
-
0
.
0036
⇒
∆
y
=
-
0
.
0036
∴
0
.
082
=
y
+
∆
y
=
0
.
2864
Suggest Corrections
0
Similar questions
Q.
Using differentials, find the approximate values of the following:
(i)
25
.
02
(ii) (0.009)
1/3
(iii) (0.007)
1/3
(iv)
401
(v) (15)
1/4
(vi) (255)
1/4
(vii)
1
(
2
.
002
)
2
(viii) log
e
4.04, it being given that log
10
4 = 0.6021 and log
10
e = 0.4343.
(ix) log
e
10.02, it being given that log
e
10 = 2.3026.
(x) log
10
10.1, it being given that log
10
e = 0.4343.
(xi) cos 61°, it being given that sin 60° = 0.86603 and 1° = 0.01745 radian.
(xii)
1
25
.
1
(xiii)
sin
22
14
(xiv)
cos
11
π
36
(xv) (80)
1/4
(xvi) (29)
1/3
(xvii) (66)
1/3
(xviii)
26
(xix)
37
(xx)
0
.
48
(xxi) (82)
1/4
(xxii)
17
81
1
/
4
(xxiii) (33)
1/5
(xxiv)
36
.
6
(xxv) 25
1/3
Q.
Find
log
e
(
4.04
)
, if
log
10
4
=
0.6021
,
log
10
e
=
0.4343
Q.
Find the approximate value of log
10
1005, given that log
10
e = 0.4343.
Q.
Find the value of
x
, given that
2
log
10
(
2
x
−
1
)
=
log
10
2
+
log
10
(
2
x
+
3
)
Q.
Using the formula,
cos
A
=
1
+
cos
2
A
2
, find the value of cos 30°, it being given that cos 60° =
1
2
.
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Extrema
MATHEMATICS
Watch in App
Explore more
First Derivative Test for Local Maximum
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app