Let y=logex⇒dydx=1x
And x =10 and Δx=0.02
Then,
Δy=loge(x+Δx)−logex
⇒Δy=loge(10+0.02)−loge10
⇒Δy=loge10.02−2.3026
⇒loge10.02=2.3026+Δy ...(1)
Now, approximate change in value of y is given by,
∵Δy≈(dydx)×Δx
⇒Δy≈1x×Δx
⇒Δy≈110×(0.02)≈0.002
From equation (1)
loge10.02≈2.3026+0.002
∴loge10.02≈2.3046