Let y=1x2⇒dydx=−2x3
And x = 2 and Δx=0.002
Then,
Δy=1(x+Δx)2−1x2
⇒Δy=1(2+0.002)2−122
⇒Δy=1(2.002)2=0.25+Δy ...(1)
Now, approximate change in value of y is given by,
∵Δy≈(dydx)×Δx
⇒Δy≈−2x3×Δx
⇒Δy≈−2x3×(0.002)≈−0.0005
From equation(1)
1(2.002)2≈0.25−0.0005
∴1(2.002)2≈0.2495