Let y=log10x⇒dydx=1xlog10e
And x =10 and Δx=0.1
Then,
Δy=log10(x+Δx)−log10x
⇒Δy=log10(10+0.1)−log1010
⇒Δy=log1010.1−1
⇒log1010.1=1+Δy ...(1)
Now, approximate change in value of y is given by,
∵Δy≈(dydx)×Δx
⇒Δy≈1xlog10e×Δx
⇒Δy≈110×(0.4343)×0.1≈0.004343
From equation (1)
log1010.1≈1+0.004343
∴log1010.1≈1.004343