Let y=cosx⇒dydx=−sinx
And x=60∘ and Δx=1∘
Then,
Δy=cos(x+Δx)−cosx
⇒Δy=cos(60∘+1∘)−cos60∘
⇒Δy=cos61∘−0.5
⇒cos61∘=0.5+Δy ...(1)
Now, approximate change in value of y is given by,
∵Δy≈(dydx)×Δx
⇒Δy≈−sinx×Δx
⇒Δy≈−sin60∘×1∘
⇒Δy≈−0.86603×0.01745≈−0.0151
From equation (1)
cos61∘≈0.5−0.0151
∴cos61∘≈0.4849