Using distance formula prove that the following points are collinear
(i) A(4, -3, -1), B(5, -7, 6) and C(3, 1, -8)
(ii) P(0,7, -7), Q(1, 4, -5) and R(-1, 10, -9)
(iii) A(3, -5, 1), B(-1, 0, 8) and C(7, -10, -6)
(i) A(4, -3, -1), B(5, -7, 6) and C(3, 1, -8)
AB = √(x1−x2)2+(y1−y2)2+(z1−z2)2
=√(5−4)2+(−7+3)2+(6+1)2
=√(1)2+(−4)2+(7)2
=√1+16+49
√66 units
BC =√(3−5)2+(1+7)2+(8−6)2
=√(−2)2+(8)2+(−14)2
=√4+64+196
=√264
=2√266
AC = √(3−4)2+(1+3)2+(−8+1)2
=√(−1)2+(4)2+(−7)2
=√1+16+49
=√66
Since AC + AB = BC
So, A, B, C are collinear.
(ii) P (0, 7, -7), Q(1, 4, -5) and R (-1, 10, -9)
PQ = √(1−0)2+(4−7)2+(−5+7)2
=√(1)2+(−3)2+(2)2
=√1+9+4
=√14 units
QR = √(−1−1)2+(10−4)2+(−9+5)2
=√(−2)2+(6)2+(−4)2
=√4+36+16
=2√14 units
PQ = √(−1−0)2+(10−7)2+(−9+7)2
=√(−1)2+(3)2+(−2)2
=√1+9+4
=√14
Since PQ + PR =QR
So, P, Q, R are collinear
(iii) A ()3, -5, 1, B(-1, 0, 8) and C(7, -10, -6)
AB = √(−1−3)2+(0+5)2+(8−1)2
=√(−4)2+(5)2+(7)2
=√90
=3√10
BC =√(7+1)2+(−10−0)2+(−6−8)2
=√(8)2+(−10)2+(−14)2
=√64+100+196
=√360 units
6√10 units
CA = √(7−3)2+(−10+5)2+(−6−1)2
=√(4)2+(−5)2+(−7)2
=√16+25+49
=√90
=3√10 units
Since AB + AC = BC
So, A, B and C are collinear