To find the square root of the given polynomial x4+2x3−3x2+2x−1, we must equate it to the general form of equation that is (ax2+bx+c) as shown below:
√x4+2x3−3x2+2x−1=ax2+bx+c⇒(√x4+2x3−3x2+2x−1)2=(ax2+bx+c)2⇒x4+2x3−3x2+2x−1=(ax2+bx+c)2⇒x4+2x3−3x2+2x−1=(ax2)2+(bx)2+(c)2+(2×ax2×bx)+(2×bx×c)+(2×c×ax2)(∵(a+b+c)2=a2+b2+c2+2ab+2bc+2ca)⇒x4+2x3−3x2+2x−1=a2x4+b2x2+c2+2abx3+2bcx+2acx2
Now, comparing the coefficients, we get:
a2=1,b2+2ac=−3,c2=−1,2ab=2,2bc=2
a2=1⇒a=1
c2=−1⇒c=i
2ab=2⇒2×1×b=2⇒2b=2⇒b=1
Therefore, a=1,b=1,c=i and substituting the values in the equation (ax2+bx+c), we get x2+x+i.
Hence, the square root of x4+2x3−3x2+2x−1 is ∣∣(x2+x+i)∣∣.