Given equations
2x+3y+10z=4
4x−6y+5z=1
6x+9y−20z=2
Let 1x=a,1x=b and 1z=c, then2a+3b+10c=4
4a−6b+5c=1
6a+9b−20c=2
Here , Δ=∣∣
∣∣23104−6569−20∣∣
∣∣
=2(120−45)−3(−80−30)+10(36+36)=150+330+720
=1200
Δ1=∣∣
∣∣43101−6529−20∣∣
∣∣
=4(120−45)−3(−20−10)+10(9+12)
=300+90+210
=600
Δ2=∣∣
∣∣241041562−20∣∣
∣∣=2(−20−10)−4(−80−30)+10(8−6)=−60+440+20=400
and Δ3=∣∣
∣∣2344−61692∣∣
∣∣
=2(−12−9)−3(8−6)+4(36+36)
=−42−6+288
=240
Using Carame's rule.
x=Δ1Δ=6001200=12
y=Δ2Δ=4001200=13
z=Δ3Δ=2401200=15
∴a=12→1x=12⇒x=2
b=13→1y=13⇒y=3
c=15→1z=15⇒z=5
Hence, x=2,y=3,z=5