wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Using elementary transformations, find the inverse of matrix [3142], if it exists.


Open in App
Solution

Let A=[3142]
We know that A=IA
[3142]=[1001]A
Applying R113R1
331342=130301A
11342=13001A
Applying R2R2+4R1
⎢ ⎢ ⎢1134+4(1)2+4(13)⎥ ⎥ ⎥=⎢ ⎢ ⎢1300+4(13)1+4(0)⎥ ⎥ ⎥A
⎢ ⎢ ⎢1130(23)⎥ ⎥ ⎥=⎢ ⎢ ⎢130(43)1⎥ ⎥ ⎥A
Applying R232R2
⎢ ⎢ ⎢11332(0)32(23)⎥ ⎥ ⎥=⎢ ⎢ ⎢13032(43)32(1)⎥ ⎥ ⎥A
11301=⎢ ⎢130232⎥ ⎥A
Applying R1R1+13R2
1+13(0)13+13(1)01=⎢ ⎢ ⎢13+13(2)0+13(32)232⎥ ⎥ ⎥A
[1001]=⎢ ⎢3312232⎥ ⎥A
I=⎢ ⎢112232⎥ ⎥A
This is similar to I=A1A
Hence, A1=⎢ ⎢112232⎥ ⎥

flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon