wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Using elementary transformations, find the inverse of the followng matrix.

132305250

Open in App
Solution

Let A=132305250. We know that A=IA,
132305250=1323911014=100310201A
(Using R2R2+3R1 and R3R32R1)
⎢ ⎢13201119014⎥ ⎥=⎢ ⎢10013190201⎥ ⎥A (Using R219R2)

⎢ ⎢ ⎢1320111900259⎥ ⎥ ⎥=⎢ ⎢ ⎢1001319053191⎥ ⎥ ⎥A (Using R3R3+R2)
⎢ ⎢13201119001⎥ ⎥=⎢ ⎢ ⎢1001319035425925⎥ ⎥ ⎥A (Using R3(925)R3)
⎢ ⎢ ⎢15225182525425112535125925⎥ ⎥ ⎥A
(Using R2R2+(119)R3 and R1R1+2R3)

100010001=⎢ ⎢ ⎢1253525425112535125925⎥ ⎥ ⎥A (Using R1R13R2)
Hence, A1=⎢ ⎢ ⎢12535254251125351595⎥ ⎥ ⎥=125251015104111519(AA1=I)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Finding Inverse Using Elementary Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon