wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Using elementary transformations, find the inverse of the followng matrix.

201510013

Open in App
Solution

Let A=201510013.We know that A =IA
201510013=100010001A⎢ ⎢1012510013⎥ ⎥=⎢ ⎢1200010001⎥ ⎥A
(Using R1(12)R1)
⎢ ⎢10120152013⎥ ⎥=⎢ ⎢12005210001⎥ ⎥A (Using R2R25R1)

⎢ ⎢ ⎢101201521012⎥ ⎥ ⎥=⎢ ⎢ ⎢120052101211⎥ ⎥ ⎥A (Using R3R3R2)
⎢ ⎢10120152001⎥ ⎥=⎢ ⎢12005210522⎥ ⎥A (Using R32R3)
100010001=3111565522A
(Using R2R252R3 and R1R1+12R3)
A1=3111565522(AA1=I)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Adjoint and Inverse of a Matrix
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon