Using elementary transformations, find the inverse of the followng matrix.
[2111]
Let A=[2111]
We know that A=IA
∴[2111]=[1001]A⇒[1121]=[0110]A (Using R1↔R2)
⇒[110−1]=[011−2]A (Using R2→R2−2R1)
⇒[1101]=[01−12]A (Using R2→(−1)R2)
⇒[1001]=[1−1−12]A (Using R1→R1−R2)
∴A−1=[1−1−12]