Using elementary transformations, find the inverse of the followng matrix.
[2−3−12]
Let A=[2−3−12]. We know that A=IA
∴[2−3−12]=[1001]A⇒[1−32−12]=[12001]A (Using R1→12R1)
⇒[1−32012]=[120121]A (Using R2→R2+R1)
⇒[1−3201]=[12012]A (Using R2→2R2)
⇒[1001]=[2312]A (Using R1→R1+32R2)
∴A−1=[2312](∵AA−1=I)