wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Using elementary transformations, find the inverse of the followng matrix.

233223322

Open in App
Solution

Let A=233223322.We know that A=IA
233223322=100010001A114223322=111010001A
(Using R1)R1+R2R3
1140050510=111212334A
(Using R22R1 ~and~ R3R33R1)
1140510005=111334212A (Using R2R3)

114012001=⎢ ⎢ ⎢111353545251525⎥ ⎥ ⎥A (Using R215R2andR315R3)
110010001=⎢ ⎢ ⎢35153515150251525⎥ ⎥ ⎥A (Using R2R22R3 and R14R3)

100010001=⎢ ⎢ ⎢2503515150251525⎥ ⎥ ⎥A(UsingR1R1R2)I3=15203110203AA1=15203110212(AA1=I3)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Adjoint and Inverse of a Matrix
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon