Using elementary transformations, find the inverse of the followng matrix.
[2357]
Let A=[2357].We know that A=IA
[2357]=[1001]A⇒[13257]=[12001]A(R1n→12R1)⇒[1320−12]=⎡⎣120−521⎤⎦A (Using R2→R2−5R1)
⇒[13201]=[1205−2]A (Using R2→(−2)R2)
⇒[1001]=[−735−2]A (Using R1→R1−32R2)
A−1=[−735−2]