Using elementary transformations, find the inverse of the followng matrix.
[3152]
Let A=[3152], We know that A =IA
∴[3152]=[1001]A⇒[11352]=[13001]A (Using R1→13R1)
⇒⎡⎣113013⎤⎦=⎡⎣130−531⎤⎦A (Using R2→R2−5R1)
⇒[11301]=[130−53]A (Using R2→3R2)
⇒[1001]=[2−1−53]A (Using R1→R1−13R2)
∴A−1=[2−1−53]