Using elementary transformations, find the inverse of the followng matrix.
[31027]
Let A=[31027], We know that A =IA
∴[31027]=[1001]A⇒[110327]=[13001]A (Using R1→13R1)
⇒⎡⎣1103013⎤⎦=⎡⎣130−231⎤⎦A (Using R2→R2−2R1)
⇒[110301]=[130−23]A (Using R2→3R2)
⇒[1001]=[7−10−23]A (Using R1→R1−103R2)
∴A−1=[7−10−23](∵AA−1=I)