Using equation x=Ae(−bt2m)cos(ω′t+ϕ) and assuming ϕ=0 at t=0, find the expression for acceleration at t=0.
x=Ae−bt2mcos(ω′t+ϕ)⇒v=dxdt=−b2mAe−bt2mcos(ω′t+ϕ)−Ae−bt2mω′sin(ω′t+ϕ)⇒a=d2xdt2=−Ab2m⎡⎢⎣−b2me−bt2mcos(ω′t+ϕ)−e−bt2mω′sin(ω′t+ϕ)⎤⎥⎦+bA2mω′e−bt2msin(ω′t+ϕ)
−Aω′2e−bt2mcos(ω′t+ϕ)⇒a(ϕ=0,t=0)=−Aω′2+Ab24m2=A[b24m2−km]