wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Using Euclid's division algorithm, find the HCF of
(i) 612 and 1314
(ii) 1260 and 7344
(iii) 4052 and 12576

Open in App
Solution

(i) 612 and 1314

612 < 1314
Thus, we divide 1314 by 612 by using Euclid's division lemma

1314 = 612 × 2 + 90

∵ Remainder is not zero,
∴ we divide 612 by 90 by using Euclid's division lemma

612 = 90 × 6 + 72

∵ Remainder is not zero,
∴ we divide 90 by 72 by using Euclid's division lemma

90 = 72 × 1 + 18

∵ Remainder is not zero,
∴ we divide 72 by 18 by using Euclid's division lemma

72 = 18 × 4 + 0

Since, Remainder is zero,

Hence, HCF of 612 and 1314 is 18.

(ii) 1260 and 7344

1260 < 7344
Thus, we divide 7344 by 1260 by using Euclid's division lemma

7344 = 1260 × 5 + 1044

∵ Remainder is not zero,
∴ we divide 1260 by 1044 by using Euclid's division lemma

1260 = 1044 × 1 + 216

∵ Remainder is not zero,
∴ we divide 1044 by 216 by using Euclid's division lemma

1044 = 216 × 4 + 180

∵ Remainder is not zero,
∴ we divide 216 by 180 by using Euclid's division lemma

216 = 180 × 1 + 36

∵ Remainder is not zero,
∴ we divide 180 by 36 by using Euclid's division lemma

180 = 36 × 5 + 0

Since, Remainder is zero,

Hence, HCF of 1260 and 7344 is 36.

(iii) 4052 and 12576

4052 < 12576
Thus, we divide 12576 by 4052 by using Euclid's division lemma

12576 = 4052 × 3 + 420

∵ Remainder is not zero,
∴ we divide 4052 by 420 by using Euclid's division lemma

4052 = 420 × 9 + 272

∵ Remainder is not zero,
∴ we divide 420 by 272 by using Euclid's division lemma

420 = 272 × 1 + 148

∵ Remainder is not zero,
∴ we divide 272 by 148 by using Euclid's division lemma

272 = 148 × 1 + 124

∵ Remainder is not zero,
∴ we divide 148 by 124 by using Euclid's division lemma

148 = 124 × 1 + 24

∵ Remainder is not zero,
∴ we divide 124 by 24 by using Euclid's division lemma

​124 = 24 × 5 + 4

∵ Remainder is not zero,
∴ we divide 24 by 4 by using Euclid's division lemma

24 = 4 × 6 + 0

Since, Remainder is zero,

Hence, HCF of 4052 and 12576 is 4.










flag
Suggest Corrections
thumbs-up
23
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon