The correct option is B p(x)=(x−1)(x−3)(x+3)(2x−5)
45⇒±1,±3,±5,±9,±15,±45
If we put x = 1 in p(x)
p(1)=2(1)4−7(1)3−13(1)2+63(1)−45
p(1)=2−7−13+63−45=65−65=0
∴x=1 or x - 1 is a factor of p(x).
Similarly if we put x = 3 in p(x)
p(3)=2(3)4−7(3)3−13(3)2+63(3)−45
p(3)=162−189−117+189−45=162−162=0
Hence, x = 3 or (x - 3) = 0 is the factor of p(x).
p(x)=2x4−7x3−13x2+63x−45
∴p(x)=2x3(x−1)−5x2(x−1)−18x(x−1)+45(x−1)
⇒p(x)=(x−1)(2x3−5x2−18x+45)
⇒p(x)=(x−1)(2x3−5x2−18x+45)
⇒p(x)=(x−1)[2x2(x−3)+x(x−3)−15(x−3)]
⇒p(x)=(x−1)(x−3)(2x2+x−15)
⇒p(x)=(x−1)(x−3)(2x2+6x−5x−15)
⇒p(x)=(x−1)(x−3)[2x(x+3)−5(x+3)]
⇒p(x)=(x−1)(x−3)(x+3)(2x−5).