wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Using factor theorem, find the solution set of the equation ∣ ∣142012512x5x2∣ ∣=0

Open in App
Solution

∣ ∣142012512x5x2∣ ∣=0
1((2×5x2)5(2x))4(5x25)+20(2x+2)=0
10x210x20x2+20+40x+40=0
30x2+30x+60=0
30x230x60=0
30(x2x2)=0
x2x2=0
If we put x=1 in the equation
We get,
(1)2(1)21+12=0
(1) is a root
(x+1) is a factor of x2x2
(x2)(x+1))¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯x2x2 x2± x___________ __ 2x22x2_____________0
x2x2=(x+1)(x2)=0
x=1 or x=2


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Remainder Theorem
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon