Using factor theorem, show that g(x) is a factor of p(x), when
p(x)=2x4+9x3+6x2−11x−6,g(x)=x−1
p(x)=2x4+9x3+6x2−11x−6g(x)=x−1x=1
If p(x) is a multiple of g(x), the remainder will be zero.
p(1)=2(1)4+9(1)3+6(1)2−11(1)−6=2+9+6−11−6=0
Therefore p(x) is a multiple of g(x)