Using factor theorem, show that g(x) is a factor of p(x), when
p(x)=2x4+x3−8x2−x+6,g(x)=2x−3
p(x)=2x4+x3−8x2−x+6,g(x)=2x−3x=32
If p(x) is a multiple of g(x), the remainder will be zero.
p(32)=2(32)4+(32)3−8(32)2−32+6=818+278−18−32+6=1088−12−32=108−96−128=0
Therefore p(x) is a multiple of g(x)