Using first principle, find the derivative of tan√x.
Let f(x)=tan√x
By using first principle, f′(x)=limh→0f(x+h)−f(x)h
=limh→0tan√x+h−tan√xh
=limh→0sin√x+hcos√x+h−sin√xcos√xh
=limh→0sin√x+hcos√x−sin√x cos√x+hh cos (√x+h)cos √x
=limh→0sin[(√x+h)−√x]h cos√x cos(√(x+h)) [∵sin A cos B−cos A sin B =sin(A−B)]
=limh→0sin(√x+h−√x)h cos√x cos(√x+h)×√x+h−√x√x+h−√x
[multipying numerator and denominator by √x+h−√x]
=limh→0√x+h−√xxh cos √x cos(√x+h)×limh→0(sin(√x+h−√x)√x+h−√x)
=1cos2√x×limh→0√x+h−√xh×1 [∵limh→0sin hh=1]
=sec2√x×limh→0√x+h−√xh×√x+h+√x√x+h+√x=sec2√x×limh→0x+h−xh(√x+h+√x)
=sec2√x×limh→0hh(√x+h+√x)
=sec2√x×12√x=sec2√x2√x