Using identities, evaluate 992
Finding the value of 992:
992 can be written as (100–1)2
Using the identity
(a–b)2=a2+b2–2ab
(99)2=(100–1)2(100–1)2=1002+12–2×100×1(100–1)2=1002+12–200(100–1)2=10000+1–200(100–1)2=9801∴992=9801
Hence, the value of 992is9801.
Using identities, evaluate.
(i) 712 (ii) 992 (iii) 1022 (iv) 9982
(v) (5.2)2 (vi) 297 × 303 (vii) 78 × 82
(viii) 8.92 (ix) 1.05 × 9.5