4x2+9y2=36
∴4x236+9y236=1
∴x29+y24=1
Here x=3 and b=2
∴a>b
∴ Given equation represents ellipse symmetric about X-axis.
∴ Required area =4(Area of the region OAB in first quadrant)
=4∣∣
∣∣a∫0ydx∣∣
∣∣
Now y24=1−x29
=9−x29
∴y2=49(9−x2)
∴y=23√32−x2
(∵ In first quadrant y>0)
∴a∫0ydx=233∫0√32−x2dx
=23{x√32−x22+322sin−1(x3)}30
=23{(0+92sin−1(1))−(0+0)}
=23(92)π2
∴a∫0ydx=3π2
∴ Total area =4(3π2)
=6π sq. Unit.