We have,
Given that,
x2+y2≤2ax
We can written that,
(x−a)2+y2≤a2......(1)
Which is region inside the circle with radius a and centre as (a,0).
Now,
y2≥ax
Which is region outside the parabola y2=ax …… (2)
x,y≥0 i.e. region lies in the Ist quadrant …… (3)
Therefore the required region,
A=∫a0[√2ax−x2−√ax].dx
=∫a0√2ax−x2dx−∫a0√axdx
=∫a0√a2−(x−a)2dx−√a∫a0√xdx
On integrating and we get,
Applying formula,
∫√a2−x2dx=x√a2−x22+a22sin−1xa
[⎡⎢ ⎢⎣(x−a)√a2−(x−a)22+a22sin−1(x−a2)⎤⎥ ⎥⎦0a−√a⎡⎢ ⎢ ⎢ ⎢⎣x3232⎤⎥ ⎥ ⎥ ⎥⎦0a
Then,
A=⎡⎢
⎢⎣(a−a)√a2−(a−a)22+a22sin−1(a−a2)−(0−a)√a2−(0−a)22−a22sin−1(0−a2)⎤⎥
⎥⎦−√a23a32
A=0+0−0+a22sin−11−23a2
=a22.π2−23a2
=a2(π4−23)
Hence, this is the answer.