1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Local Maxima
Using integra...
Question
Using integration, find the area of the given region:
{
(
x
,
y
)
|
|
x
−
1
|
≤
y
≤
√
5
−
x
2
}
.
Open in App
Solution
Given that,
y
1
=
|
x
−
1
|
and
y
2
=
√
5
−
x
2
are show in fly
let A be the area of hounded region
A
=
∫
1
−
1
(
y
2
−
y
1
)
d
x
+
∫
2
1
(
y
2
−
y
1
)
d
x
A
=
1
∫
−
1
(
√
5
−
x
2
+
x
−
1
)
d
x
+
2
∫
1
(
√
5
−
x
2
−
x
+
1
)
d
x
A
=
1
∫
−
1
√
5
−
x
2
d
x
+
2
∫
1
√
5
−
x
2
d
x
+
1
∫
−
1
(
x
−
1
)
d
x
+
2
∫
1
(
−
x
+
1
)
d
x
A
=
2
∫
−
1
√
5
−
x
2
d
x
+
[
x
2
2
−
x
]
−
1
1
+
[
−
x
2
2
+
x
]
2
1
A
=
[
1
2
x
√
5
−
x
2
+
5
2
sin
−
1
x
√
5
]
2
−
1
−
5
2
A
=
1
+
5
2
sin
−
1
2
√
5
+
1
+
5
2
sin
−
1
1
√
5
−
5
2
A
=
−
1
2
+
5
2
sin
−
1
(
2
√
5
×
√
1
−
1
5
+
1
√
3
√
1
−
4
5
)
A
=
−
1
2
+
5
2
sin
−
1
(
1
)
Hence, we get ,
5
π
4
−
1
2
5
π
−
2
4
Suggest Corrections
0
Similar questions
Q.
Using integration find the area of the region:
x
,
y
:
x
-
1
≤
y
≤
5
-
x
2
.