1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
f(x) Transforms to f(-x)
Using integra...
Question
Using integration, find the area of the region bounded by the curves
y
=
√
5
−
x
2
and
y
=
|
x
−
1
|
Open in App
Solution
We have
y
=
√
5
−
x
2
…
(
i
)
and
y
=
|
x
−
1
|
=
{
x
−
1
,
i
f
x
≥
1
1
−
x
,
i
f
x
<
1
…
(
i
i
)
Solving (i) and (ii),
|
x
−
1
|
2
=
[
√
5
−
x
2
]
2
⇒
x
2
−
2
x
+
1
=
5
−
x
2
⇒
x
2
−
x
−
2
=
0
y
=
|
x
−
1
|
⇒
(
x
+
1
)
(
x
−
2
)
=
0
∴
x
=
−
1
,
2
[
1
]
∴
Required area
=
∫
2
−
1
y
i
d
x
−
∫
2
−
1
y
i
i
d
x
[
2
]
⇒
=
∫
2
−
1
√
5
−
x
2
d
x
−
∫
2
−
1
|
x
−
1
|
d
x
[
2
]
⇒
=
∫
2
−
1
√
5
−
x
2
d
x
−
[
∫
1
−
1
|
x
−
1
|
d
x
+
∫
2
1
|
x
−
1
|
d
x
]
⇒
=
∫
2
−
1
=
√
5
−
x
2
d
x
−
∫
1
−
1
−
(
x
−
1
)
d
x
−
∫
2
1
(
x
−
1
)
d
x
⇒
=
[
x
2
√
5
−
x
2
+
5
2
s
i
n
−
1
x
√
5
]
2
−
1
+
[
(
x
−
1
)
2
2
]
1
−
1
−
[
(
x
−
1
)
2
2
]
2
1
⇒
=
[
x
2
√
5
−
x
2
+
5
2
s
i
n
−
1
x
√
5
]
2
−
1
[
(
x
−
1
)
2
2
]
1
−
1
−
[
(
x
−
1
)
2
2
]
2
1
⇒
[
1
+
5
2
s
i
n
−
1
2
√
5
]
−
[
−
1
−
5
2
s
i
n
−
1
1
√
5
]
+
0
−
2
−
1
2
+
0
⇒
5
2
[
s
i
n
−
1
2
√
5
+
s
i
n
−
1
1
√
5
]
−
1
2
sq. units
⇒
5
2
[
s
i
n
−
1
(
2
√
5
√
1
−
1
5
+
1
√
5
4
5
)
]
−
1
2
⇒
5
2
[
s
i
n
−
1
(
4
5
+
1
5
)
]
−
1
2
=
5
2
×
π
2
−
1
2
=
(
5
π
4
−
1
2
)
sq. units.
Suggest Corrections
0
Similar questions
Q.
Sketch the region bounded by the curves
y
=
√
5
−
x
2
and
y
=
|
x
−
1
|
and find its area using integration.
Q.
Find the area of the region bounded by the curves
(
x
−
1
)
2
+
y
2
=
1
and
x
2
+
y
2
=
1
using integration method.
Q.
Using integration, find the area of the region bounded by the curves :
y
=
|
x
+
1
|
+
1
,
x
=
−
3
,
x
=
3
,
y
=
0
Q.
Using integration find the area of the region bounded by the curves
y
=
4
-
x
2
,
x
2
+
y
2
-
4
x
=
0
and the
x
-axis.