1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Area between Two Curves
Using integra...
Question
Using integration, find the area of the region bounded by the triangle whose vertices are
(
−
1
,
2
)
,
(
1
,
5
)
and
(
3
,
4
)
.
Open in App
Solution
Let
A
=
(
−
1
,
2
)
B
=
(
1
,
5
)
C
=
(
3
,
4
)
We have to find the area of
Δ
A
B
C
,
Find equation of line AB
→
y
−
5
=
(
2
−
5
−
1
−
1
)
(
x
−
1
)
y
−
5
=
3
2
(
x
−
1
)
2
y
−
10
=
3
x
−
3
3
x
−
2
y
+
7
=
0
---- (1)
y
=
3
x
+
7
2
Equation of line BC
→
y
−
4
=
(
5
−
4
1
−
3
)
(
x
−
3
)
y
−
4
=
1
−
2
(
x
−
3
)
2
y
−
8
=
−
x
+
3
x
+
2
y
−
11
=
0
---(2)
y
=
11
−
x
2
Equation of line AC
→
y
−
4
=
(
2
−
4
−
1
−
3
)
(
x
−
3
)
y
−
4
=
1
2
(
x
−
3
)
2
y
−
8
=
x
−
3
x
−
2
y
+
5
=
0
---(3)
y
=
x
+
5
2
So, the required area =
∫
1
−
1
(
3
x
+
7
2
)
d
x
+
∫
3
1
(
11
−
x
2
)
d
x
−
∫
3
−
1
(
x
+
5
2
)
d
x
=
1
2
[
3
x
2
2
+
7
x
]
1
−
1
+
1
2
[
11
x
−
x
2
2
]
3
1
−
1
2
[
x
2
2
+
5
x
]
3
−
1
=
1
2
[
[
(
3
2
+
7
)
−
(
3
2
−
7
)
]
+
1
2
[
(
33
−
9
2
)
−
(
11
−
1
2
)
]
−
1
2
[
(
9
2
+
15
)
−
(
1
2
−
5
)
]
]
=
1
2
[
14
+
22
−
4
−
24
]
⇒
1
2
[
36
−
28
]
=
4
sq.units.
Therefore, the area of the triangle is
4
sq.units.
Suggest Corrections
0
Similar questions
Q.
Using integration, find the area of the region bounded by the triangle whose vertices are (−1, 2), (1, 5) and (3, 4). [CBSE 2014]