Using integration, find the area of the region enclosed between the two circles x2+y2=4 and (x−2)2+y2=4
Open in App
Solution
Clearly, given circles intersect at (1,√3) and (1,−√3) ∴Requiredarea=2(AreaOABO) =2(∫10y1dx+∫21y1dx)=2{∫21√4−x2dx+∫10√4−(x−2)2} =[x√4−x2+4sin−1x2]21+[(x−2)√4−(x−2)2+4sin−1x−22]10 =4sin−11−(√3+4×π6)+{−√3+4sin−1(−12)}−{0+4sin−1(−1)} =4×π2−(√3+2π3)+(−√3−4π6)−(−4π2)=8π3−2√3