y=2x+1 --------- ( 1 )
y=3x+1 --------- ( 2 )
x=4 ---------- ( 3 )
To find the vertex A,let us solve equation ( 1 ) & ( 2 ),
2x+1=3x+1
We get, x=0 and y=1
Hence, vertex of A=(0,1)
To find the vertex B let us solve the equation ( 2 ) & ( 3 ),
y=3x+1
x=4
y=12+1=13.
Hence, vertex B is (4,13)
To find the vertex C,let us solve equation (3) & $( 1 )
x=4
y=2x+1
y=8+1=9
Hence, vertex C is (4,9).
Now the required area of the triangle is the shaded portion as shown in the fig.
Hence,
Ar(△ACD)=Ar(OLBAO)−Ar(OLCAO)
Ar(△ACD)=∫40(3x+1)dxdx−∫40(2x+1)dx.
On integrating we get,
Ar(△ACD)=[3x22+x]40−[2x22+x]40
On applying limits we get,
Ar(△ACD)=(24+4)−(16+4)
Ar(△ACD)=28−20
∴ A=8unit2
Hence, the required area is 8unit2