Given equation of line is, 3x−2y+120
⇒y=3x+122 ………….(1)
Equation of parabola is, 3x2=4y …………..(2)
Substitute value of y from equation (1) in equation (2),
3x2=4(3x+122)
3x2=6x+24
⇒x2=2x+28
⇒(x−4)(x+2)=0
⇒x=4 and x=−2
For x=4, y=3×4+122=12⇒y=12
For x=−2, y=3×(−2)+122=3⇒y=3
Points of intersection are (4,12) and (−2,3)
Draw graph of line 3x−4y+12=0 & parabola 3x2=4y,
Required area =∫4−2(3x+122−3x23)dx
=34∫4−2(2x+8−x2)dx
=34[x2+8x−x33]4−2
=34[(16+32−643)−(4−16+83)]
Required area=27 sq.units.