Let, P( n ): d dx ( x n )=n x n−1 for all positive integers.
For n=1,
P( 1 ): d dx ( x )=1× x 1−1
Thus, the value of P( n )is true for n=1.
Let the value of P( k )be true for some positive integer k.
P( k ): d dx ( x ) k =k x k−1
Consider the value of P( k+1 )is true for some positive integer ( k+1 ).
d dx ( x k+1 )= d dx ( x× x k ) = x k d dx ( x )+x d dx ( x k ) = x k ×1+x×k x k−1 = x k ( k+1 )
Further simplify,
d dx ( x k+1 )=( k+1 ) x ( k+1 )−1
Thus, the value of P( k+1 )is true if P( k )is true.
Hence, by mathematical induction, the given statement is true for every positive integer.