The correct option is B n3−n2+1
Given an+1−an=3n2+n,
When n=0,a1−a0=0
When n=1,a2−a1=4
When n=2,a3−a2=14
.
.
When n=n−1,an−an−1=3(n−1)2+(n−1)
Adding, we get an−a0=3∑(n−1)2+∑(n−1)
⇒an−1=(n−1)n(2n−1)2+(n−1)n2=n3−n2
⇒an=n3−n2+1
Let P(n):an=n3−n2+1 is true for n.
For n=1⇒a1=1,P(n+1):an+1=3n2+n+n3−n2+1
⇒an+1=(n+1)3−(n+1)2+1 is true for n=n+1 also.
So, an=n3−n2+1 is true.