Let solution is
X=⎡⎢⎣xyz⎤⎥⎦Then, AX=B, where A=⎡⎢⎣2−3532−411−2⎤⎥⎦ and B=⎡⎢⎣11−5−3⎤⎥⎦
→X=A−1B
We first find A−1,
Step 1: Calculate the Matrix of Minors, let it be M
M=⎡⎢⎣0−211−952−2313⎤⎥⎦
Step 2:then turn it into matrix of co-factors,
This is easy! Just apply a "checkerboard" of minuses to the "Matrix of Minors". In other words, we need to change the sign of alternate cells, like this:
M=⎡⎢⎣0−211−952−2313⎤⎥⎦ with ⎡⎢⎣+−+−+−+−+⎤⎥⎦→M=⎡⎢⎣021−1−9−522313⎤⎥⎦
Step 3:then the adjugate:
Now "Transpose" all elements of the previous matrix... in other words swap their positions over the diagonal (the diagonal stays the same):
M=⎡⎢⎣0−122−9231−513⎤⎥⎦
Step 4:Multiply by 1Determinant
Det(A)=−1
M=1Determinant⎡⎢⎣0−122−9231−513⎤⎥⎦=⎡⎢⎣01−2−29−23−15−13⎤⎥⎦
Hence A−1=M
So X=MB=⎡⎢⎣01−2−29−23−15−13⎤⎥⎦⎡⎢⎣11−5−3⎤⎥⎦
=⎡⎢⎣0×11+1×−5+(−2)×(−3)(−2)×11+9×(−5)+(−23)×(−3)(−1)×11+5×(−5)+(−13)×(−3)⎤⎥⎦=⎡⎢⎣123⎤⎥⎦
∴x=1,y=2,z=3