wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Using matrices, solve the following system of equations:
2x+3y+3z=5,x2y+z=4,3xy2z=3.

Open in App
Solution

The given system of equation can be expressed can be represented in matrix form as AX = B, where
A=∣ ∣233121312∣ ∣,X=∣ ∣xyz∣ ∣,B=∣ ∣543∣ ∣

Now |A|=∣ ∣233121312∣ ∣=2(4+1)3(23)+3(1+6)10+15+15=400

C11=(1)1+12112=4+1=5

C12=(1)1+21132=(23)=5

C13=(1)1+31231=1+6=5

C21=(1)2+13312=(6+3)=3

C22=(1)2+22332=(49)=13

C23=(1)2+32331=(29)=11

C31=(1)3+13321=3+6=9

C32=(1)3+22311=(23)=1

C33=(1)3+32312=43=7

AdjA=∣ ∣55531311917∣ ∣T=∣ ∣53951315117∣ ∣

A1=1|A|adjA=140∣ ∣53951315117∣ ∣

AX=BX=A1B

Therefore, xyz=140∣ ∣53951315117∣ ∣∣ ∣543∣ ∣

$=\frac{1}{40}\begin{bmatrix}25-12+27\\25+52+3 \\25-44-21
\end{bmatrix}$

$=\frac{1}{40}\begin{bmatrix}40\\80 \\-40
\end{bmatrix}$

∣ ∣xyz∣ ∣=∣ ∣121∣ ∣

Equating the corresponding elements we get
x=1,y=2,z=1.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon