The given system of equation can be expressed can be represented in matrix form as AX = B, where
A=∣∣
∣∣2331−213−1−2∣∣
∣∣,X=∣∣
∣∣xyz∣∣
∣∣,B=∣∣
∣∣5−43∣∣
∣∣
Now |A|=∣∣
∣∣2331−213−1−2∣∣
∣∣=2(4+1)−3(−2−3)+3(−1+6)⇒10+15+15=40≠0
C11=(−1)1+1∣∣∣−21−1−2∣∣∣=4+1=5
C12=(−1)1+2∣∣∣113−2∣∣∣=−(−2−3)=5
C13=(−1)1+3∣∣∣1−23−1∣∣∣=−1+6=5
C21=(−1)2+1∣∣∣33−1−2∣∣∣=−(−6+3)=3
C22=(−1)2+2∣∣∣233−2∣∣∣=(−4−9)=−13
C23=(−1)2+3∣∣∣233−1∣∣∣=−(−2−9)=11
C31=(−1)3+1∣∣∣33−21∣∣∣=3+6=9
C32=(−1)3+2∣∣∣2311∣∣∣=−(2−3)=1
C33=(−1)3+3∣∣∣231−2∣∣∣=−4−3=−7
AdjA=∣∣
∣∣5553−131191−7∣∣
∣∣T=∣∣
∣∣5395−131511−7∣∣
∣∣
A−1=1|A|adjA=140∣∣
∣∣5395−131511−7∣∣
∣∣
AX=B⇒X=A−1B
Therefore, ⎡⎢⎣xyz⎤⎥⎦=140∣∣
∣∣5395−131511−7∣∣
∣∣∣∣
∣∣5−43∣∣
∣∣
$=\frac{1}{40}\begin{bmatrix}25-12+27\\25+52+3 \\25-44-21
\end{bmatrix}$
$=\frac{1}{40}\begin{bmatrix}40\\80 \\-40
\end{bmatrix}$
∣∣
∣∣xyz∣∣
∣∣=∣∣
∣∣12−1∣∣
∣∣
Equating the corresponding elements we get
x=1,y=2,z=−1.