The given system of equation can be expressed can be represented in matrix form as AX = B, where
A=∣∣
∣∣3472−1312−3∣∣
∣∣,X=∣∣
∣∣xyz∣∣
∣∣,B=∣∣
∣∣4−38∣∣
∣∣
Now |A|=∣∣
∣∣3472−1312−3∣∣
∣∣=3(3−6)−4(−6−3)+7(4+1)⇒−9+36+35=62≠0
C11=(−1)1+1∣∣∣−132−3∣∣∣=3−6=−3
C12=(−1)1+2∣∣∣231−3∣∣∣=−(−6−3)=9
C13=(−1)1+3∣∣∣2−112∣∣∣=4+1=5
C21=(−1)2+1∣∣∣472−3∣∣∣=−(−12−14)=26
C22=(−1)2+2∣∣∣371−3∣∣∣=−9−7=−16
C23=(−1)2+3∣∣∣3412∣∣∣=−(6−4)=−2
C31=(−1)3+1∣∣∣47−13∣∣∣=12+7=19
C32=(−1)3+2∣∣∣3723∣∣∣=−(9−14)=5
C33=(−1)3+3∣∣∣342−1∣∣∣=−3−8=−11
AdjA=∣∣
∣∣−39526−16−2195−11∣∣
∣∣T=∣∣
∣∣−326199−1655−2−11∣∣
∣∣
A−1=1|A|adjA=162∣∣
∣∣−326199−1655−2−11∣∣
∣∣
AX=B⇒X=A−1B
Therefore, ⎡⎢⎣xyz⎤⎥⎦=162∣∣
∣∣−326199−1655−2−11∣∣
∣∣∣∣
∣∣4−38∣∣
∣∣
=162⎡⎢⎣−12−78+15236+48+4020+6−88⎤⎥⎦
=162⎡⎢⎣62124−62⎤⎥⎦
∣∣
∣∣xyz∣∣
∣∣=∣∣
∣∣12−1∣∣
∣∣
Equating the corresponding elements we get
x=1,y=2,z=−1.