Using matrix method, solve the system of equations 3x + 2y - 2z = 3, x + 2y + 3z = 6 and 2x - y + z = 2.
Given system of equations is
3x+2y−2z=3x+2y+3z=6
and 2x−y+z=2
In the form of AX = B,
⎡⎢⎣32−21232−11⎤⎥⎦⎡⎢⎣xyz⎤⎥⎦=⎡⎢⎣362⎤⎥⎦
For A−1,|A|=|3(5)−2(1−6)+(−2)(−5)|
=|15+10+10|=|35|≠0∴A11=5,A12=5,A13=−5,A21=0,A22=7,A23=7,A31=10,A32=−11 and A33=4∴adj A=∣∣
∣∣55−507710−114∣∣
∣∣T=∣∣
∣∣501057−11−574∣∣
∣∣
Now, A−1=adj A|A|=135∣∣
∣∣501057−11−574∣∣
∣∣
For X=A−1B,
⎡⎢⎣xyz⎤⎥⎦=135⎡⎢⎣501057−11−574⎤⎥⎦⎡⎢⎣362⎤⎥⎦=135⎡⎢⎣15+2015+42−22−15+42+8⎤⎥⎦=135⎡⎢⎣353535⎤⎥⎦=⎡⎢⎣111⎤⎥⎦
∴ x = 1, y = 1 and z = 1