R.E.F. Image.
length of square each side is equal
using distance formula
√(3−x1)2+(4−y1)2=√(x1−1)2+(y1−(−1))2
(3−x1)2+(4−y1)2=(x1−1)2+(y1+1)2
∴9−6x1+x21+16−8y1+y21=x21−2x1+1+y21+2y1+1
∴−6x1−8y1+25=−2x1+2y1+2
∴−6x1+2x1−8y1−2y1+25−2=0
∴−4x1−10y1+23=0
∴4x1+10y1−23=0
∴4x1+10y1=23
Similar
4x2+10y2=23
→ As length of sides are equal, we has , from
Pythagoras theorem
√(3−1)2+(4−(−1))2=√2[(x2−1)2+(y2+1)2]
√4+25=√2[(x2−1)2+(y2+1)2]
29=2(x2−1)2+(y2+1)2
29=2[(23−10y24−1)2+(y2+1)2]
292=(19−10y24)2+(y2+1)2
292=19216+100y2216−380y216+y22+2y2+1
292=22.56+625y22−23.75y2+y22+2y2+1
∴7.25y22−21.75y2+22.56+1−145=0
725y22−21.75y2+9.06=0
y22−3y2+1.25=0
y2=2.5 & 0.5 so, x2=−0.5,4.5 Ans