10
You visited us
10
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Adjoint of a Matrix
Using propert...
Question
Using properties of determinant, prove
that:
∣
∣ ∣
∣
3
a
−
a
+
b
−
a
+
c
−
b
+
a
3
b
−
b
+
c
−
c
+
a
−
c
+
b
3
c
∣
∣ ∣
∣
=
3
(
a
+
b
+
c
)
(
a
b
+
b
c
+
c
a
)
Open in App
Solution
On applying
C
1
→
C
1
+
C
2
+
C
3
to the given matrix, we get
∣
∣ ∣
∣
a
+
b
+
c
−
a
+
b
−
a
+
c
a
+
b
+
c
3
b
−
b
+
c
a
+
b
+
c
−
c
+
b
3
c
∣
∣ ∣
∣
=
(
a
+
b
+
c
)
∣
∣ ∣
∣
1
−
a
+
b
−
a
+
c
1
3
b
−
b
+
c
1
−
c
+
b
3
c
∣
∣ ∣
∣
R
1
→
R
1
−
R
2
and
R
3
→
R
3
−
R
2
=
(
a
+
b
+
c
)
∣
∣ ∣
∣
1
−
1
−
a
+
b
−
3
b
−
a
+
c
+
b
−
c
1
3
b
−
b
+
c
1
−
1
−
c
+
b
−
3
b
3
c
+
b
−
c
∣
∣ ∣
∣
=
(
a
+
b
+
c
)
∣
∣ ∣
∣
0
−
a
−
2
b
b
−
a
1
3
b
−
b
+
c
0
−
c
−
2
b
2
c
+
b
∣
∣ ∣
∣
On expanding
=
(
a
+
b
+
c
)
(
−
1
)
[
(
2
c
+
b
)
(
−
a
−
2
b
)
+
(
c
+
2
b
)
(
b
−
a
)
]
=
(
a
+
b
+
c
)
(
−
1
)
(
−
3
a
b
−
3
b
c
−
3
a
c
)
=
3
(
a
+
b
+
c
)
(
a
b
+
b
c
+
a
c
)
Suggest Corrections
2
Similar questions
Q.
Using properties of determinants, prove that: