wiz-icon
MyQuestionIcon
MyQuestionIcon
10
You visited us 10 times! Enjoying our articles? Unlock Full Access!
Question

Using properties of determinant, prove that ∣ ∣b+cabac+abcba+bcac∣ ∣=3abca3b3c3

Open in App
Solution

∣ ∣b+cabac+abcba+bcac∣ ∣
R1R1+R2+R3
=∣ ∣2(a+b+c)0a+b+cc+abcba+bcac∣ ∣
Taking a+b+c common from R1
=(a+b+c)∣ ∣201c+abcba+bcac∣ ∣
C1C12C3
=(a+b+c)∣ ∣001c+a2bbcba+b2ccac∣ ∣
R1R1+R2
=(a+b+c)∣ ∣001c+a2b+bcbcba+b2c+cacac∣ ∣
=(a+b+c)∣ ∣001abbcbbccac∣ ∣
=(a+b+c)[00+1(ab)(ca)(bc)2]
=(a+b+c)[aca2bc+bab2c2+2bc]
=(a+b+c)[a2b2c2+ba+bc+ca]
=(a+b+c)[a2+b2+c2babcca]
=(a3+b3+c33abc) by using the identity a3+b3+c33abc=(a+b+c)(a2+b2+c2babcca)
=3abca3b3c3
Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon