10
You visited us
10
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Determinant
Using propert...
Question
Using properties of determinant, prove that
∣
∣ ∣
∣
b
+
c
a
−
b
a
c
+
a
b
−
c
b
a
+
b
c
−
a
c
∣
∣ ∣
∣
=
3
a
b
c
−
a
3
−
b
3
−
c
3
Open in App
Solution
∣
∣ ∣
∣
b
+
c
a
−
b
a
c
+
a
b
−
c
b
a
+
b
c
−
a
c
∣
∣ ∣
∣
R
1
→
R
1
+
R
2
+
R
3
=
∣
∣ ∣
∣
2
(
a
+
b
+
c
)
0
a
+
b
+
c
c
+
a
b
−
c
b
a
+
b
c
−
a
c
∣
∣ ∣
∣
Taking
a
+
b
+
c
common from
R
1
=
(
a
+
b
+
c
)
∣
∣ ∣
∣
2
0
1
c
+
a
b
−
c
b
a
+
b
c
−
a
c
∣
∣ ∣
∣
C
1
→
C
1
−
2
C
3
=
(
a
+
b
+
c
)
∣
∣ ∣
∣
0
0
1
c
+
a
−
2
b
b
−
c
b
a
+
b
−
2
c
c
−
a
c
∣
∣ ∣
∣
R
1
→
R
1
+
R
2
=
(
a
+
b
+
c
)
∣
∣ ∣
∣
0
0
1
c
+
a
−
2
b
+
b
−
c
b
−
c
b
a
+
b
−
2
c
+
c
−
a
c
−
a
c
∣
∣ ∣
∣
=
(
a
+
b
+
c
)
∣
∣ ∣
∣
0
0
1
a
−
b
b
−
c
b
b
−
c
c
−
a
c
∣
∣ ∣
∣
=
(
a
+
b
+
c
)
[
0
−
0
+
1
(
a
−
b
)
(
c
−
a
)
−
(
b
−
c
)
2
]
=
(
a
+
b
+
c
)
[
a
c
−
a
2
−
b
c
+
b
a
−
b
2
−
c
2
+
2
b
c
]
=
(
a
+
b
+
c
)
[
−
a
2
−
b
2
−
c
2
+
b
a
+
b
c
+
c
a
]
=
−
(
a
+
b
+
c
)
[
a
2
+
b
2
+
c
2
−
b
a
−
b
c
−
c
a
]
=
−
(
a
3
+
b
3
+
c
3
−
3
a
b
c
)
by using the identity
a
3
+
b
3
+
c
3
−
3
a
b
c
=
(
a
+
b
+
c
)
(
a
2
+
b
2
+
c
2
−
b
a
−
b
c
−
c
a
)
=
3
a
b
c
−
a
3
−
b
3
−
c
3
Hence proved.
Suggest Corrections
0
Similar questions
Q.
Using properties of determinant, prove that
∣
∣ ∣
∣
b
+
c
a
−
b
a
c
+
a
b
−
c
b
a
+
b
c
−
a
c
∣
∣ ∣
∣
=
3
a
b
c
−
a
3
−
b
3
−
c
3
Q.
Show that
∣
∣ ∣
∣
b
+
c
a
−
b
a
c
+
a
b
−
c
b
a
+
b
c
−
a
c
∣
∣ ∣
∣
=
3
a
b
c
−
a
3
−
b
3
−
c
3
.
Q.
If a + b + c = 5 and ab + bc + ca = 10, prove that a
3
+ b
3
+ c
3
− 3abc = −25.
Q.
Question 8
If a + b + c = 5 and ab + bc + ca = 10, then prove that
a
3
+
b
3
+
c
3
−
3
a
b
c
=
−
25
.
Q.
Using properties of determinants, prove the following:
∣
∣ ∣
∣
a
b
c
a
−
b
b
−
c
c
−
a
b
+
c
c
+
a
a
+
b
∣
∣ ∣
∣
=
a
3
+
b
3
+
c
3
−
3
a
b
c
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
MATHEMATICS
Watch in App
Explore more
Determinant
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app