wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Using properties of determinant, prove that:

∣ ∣ ∣xx21+px3yy21+py3zz21+pz3∣ ∣ ∣=(1+pxyz)(xy)(yz)(zx)

Open in App
Solution

Consider, ∣ ∣ ∣xx21+px3yy21+py3zz21+pz3∣ ∣ ∣

R2R2R1,R3R3R1

=∣ ∣ ∣xx21+px3yxy2x2p(y3x3)zxz2x2p(z3x3)∣ ∣ ∣

Taking yx common from R2 and zx common from R3

=(yx)(zx)∣ ∣ ∣xx21+px31y+xp(y2+x2+xy)1z+xp(z2+x2+zx)∣ ∣ ∣

R2R2R3

=(yx)(zx)∣ ∣ ∣xx21+px30yzp(y2z2+xyzx)1z+xp(z2+x2+zx)∣ ∣ ∣

=(yx)(zx)∣ ∣ ∣xx21+px30yzp[(yz)(y+z)+x(yz)]1z+xp(z2+x2+zx)∣ ∣ ∣

Taking yx common from R2
=(yx)(zx)(yz)∣ ∣ ∣xx21+px301p(x+y+z)1z+xp(z2+x2+zx)∣ ∣ ∣

Expanding along the first column, we get
(yx)(zx)(yz)[x{p(z2+x2+zx)p(xz+x2+yz+xy+zx+z2)}]+1[x2p(x+y+z)1px3]

=(yx)(zx)(yz)[pxz2+px3+pzx2px2zpx3pxyzpx2ypx2zpx2z2]
+[px3+px2y+px2z1px3]

=(yx)(zx)(yz)(1pxyz)
=(xy)(yz)(zx)(1+pxyz)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Symmetric Matrix
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon