First take LHS: Δ=∣∣
∣∣b+cq+ry+zc+ar+pz+xa+bp+qx+y∣∣
∣∣
Applying, R1↔R3 and R3↔R2, we get
=∣∣
∣∣a+bp+qx+yb+cq+ry+zc+ar+pz+x∣∣
∣∣
Applying, R1→R1+R2+R3, we get
=∣∣
∣
∣∣2(a+b+c)2(p+q+r)2(x+y+zb+cq+ry+zc+ar+pz+x∣∣
∣
∣∣
⇒2∣∣
∣∣a+b+cp+q+rx+y+zb+cq+ry+zc+ar+pz+x∣∣
∣∣
Applying, R1→R1−R2
=2∣∣
∣∣apxb+cq+ry+zc+ar+pz+x∣∣
∣∣
Applying, R3→R3−R1
=2∣∣
∣∣apxb+cq+ry+zcrz∣∣
∣∣
Applying, R2→R2−R3
Δ=2∣∣
∣∣apxbqycrz∣∣
∣∣=RHS
Hence proved.