1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Area Method to Find Condition for Co-Linearity
Using propert...
Question
Using properties of determinants prove that :
∣
∣ ∣
∣
1
1
1
a
b
c
b
c
c
a
a
b
∣
∣ ∣
∣
=
(
a
−
b
)
(
b
−
c
)
(
c
−
a
)
.
Open in App
Solution
Consider
Δ
=
∣
∣ ∣
∣
1
1
1
a
b
c
b
c
c
a
a
b
∣
∣ ∣
∣
apply
C
1
→
C
1
−
C
3
,
C
2
→
C
2
−
C
3
Δ
=
∣
∣ ∣
∣
0
0
1
a
−
c
b
−
c
c
b
(
c
−
a
)
a
(
c
−
b
)
a
b
∣
∣ ∣
∣
take
(
a
−
c
)
common from
C
1
and
b
−
c
from
C
2
Δ
=
(
a
−
c
)
(
b
−
c
)
∣
∣ ∣
∣
0
0
1
1
1
c
−
b
−
a
a
b
∣
∣ ∣
∣
expand by
R
1
we get
Δ
=
(
a
−
c
)
(
b
−
c
)
(
b
−
a
)
=
(
a
−
b
)
(
b
−
c
)
(
c
−
a
)
Hence proved
∣
∣ ∣
∣
1
1
1
a
b
c
b
c
c
a
a
b
∣
∣ ∣
∣
=
(
a
−
b
)
(
b
−
c
)
(
c
−
a
)
Suggest Corrections
0
Similar questions
Q.
Using the property of determinants and without expanding, prove that: