wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Using properties of determinants, prove that ∣ ∣ ∣a2+1abacabb2+1bccacbc2+1∣ ∣ ∣=1+a2+b2+c2

Open in App
Solution

LHS :
∣ ∣ ∣a2+1abacabb2+1bccacbc2+1∣ ∣ ∣

=1abc∣ ∣ ∣a(a2+1)a2ba2cab2b(b2+1)b2cc2ac2bc(c2+1)∣ ∣ ∣ (R1aR1,R2bR2,R3cR3)

=∣ ∣ ∣a2+1a2a2b2b2+1b2c2c2c2+1∣ ∣ ∣ (C11aC1,C21bC2,C313C3)

=∣ ∣ ∣1+a2+b2+c21+a2+b2+c21+a2+b2+c2b2b2+1b2c2c2c2+1∣ ∣ ∣ (R1R1+R2+R3)

=(1+a2+b2+c2)∣ ∣ ∣111b2b2+1b2c2c2c2+1∣ ∣ ∣

=(1+a2+b2+c2)∣ ∣ ∣100b210c201∣ ∣ ∣ (C2C2C1,C3C3C1)

Now, on expanding along R1, we get,
=(1+a2+b2+c2)1[10]=1+a2+b2+c2 = RHS

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon