LHS :
∣∣
∣
∣∣a2+1abacabb2+1bccacbc2+1∣∣
∣
∣∣
=1abc∣∣
∣
∣∣a(a2+1)a2ba2cab2b(b2+1)b2cc2ac2bc(c2+1)∣∣
∣
∣∣ (R1→aR1,R2→bR2,R3→cR3)
=∣∣
∣
∣∣a2+1a2a2b2b2+1b2c2c2c2+1∣∣
∣
∣∣ (C1→1aC1,C2→1bC2,C3→13C3)
=∣∣
∣
∣∣1+a2+b2+c21+a2+b2+c21+a2+b2+c2b2b2+1b2c2c2c2+1∣∣
∣
∣∣ (R1→R1+R2+R3)
=(1+a2+b2+c2)∣∣
∣
∣∣111b2b2+1b2c2c2c2+1∣∣
∣
∣∣
=(1+a2+b2+c2)∣∣
∣
∣∣100b210c201∣∣
∣
∣∣ (C2→C2−C1,C3→C3−C1)
Now, on expanding along R1, we get,
=(1+a2+b2+c2)1[1−0]=1+a2+b2+c2 = RHS