wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Using properties of determinants, prove that:
∣ ∣ ∣a2+1abacbab2+1bccacbc2+1∣ ∣ ∣=a2+b2+c2+1

Open in App
Solution

∣ ∣ ∣a2+1abacbab2+1bccacbc2+1∣ ∣ ∣=a2+b2+c2+1
L.H.S Δ=∣ ∣ ∣a2+1abacbab2+1bccacbc2+1∣ ∣ ∣
Applying R11aR1,R21bR2,R31cR3
Δ=abc∣ ∣ ∣ ∣ ∣ ∣a+1abcab+1bcabc+1c∣ ∣ ∣ ∣ ∣ ∣
Δ=∣ ∣ ∣a2+1b2c2a2b2+1c2a2b2c2+1∣ ∣ ∣
Applying C1C1+C2+C3
Δ=∣ ∣ ∣1+a2+b2+c2b2c21+a2+b2+c2b2+1c21+a2+b2+c2b2c2+1∣ ∣ ∣
Δ=(1+a2+b2+c2)∣ ∣ ∣1b2c21b2+1c21b2c2+1∣ ∣ ∣
Applying R2R2R1 and R3R3R1
Δ=(1+a2+b2+c2)∣ ∣1b2c2010001∣ ∣
Expanding along C1, we get
Δ=(1+a2+b2+c2)1001
=a2+b2+c2+1= R.H.S.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon