∣∣
∣
∣∣a2+1abacbab2+1bccacbc2+1∣∣
∣
∣∣=a2+b2+c2+1
L.H.S Δ=∣∣
∣
∣∣a2+1abacbab2+1bccacbc2+1∣∣
∣
∣∣
Applying R1→1aR1,R2→1bR2,R3→1cR3
Δ=abc∣∣
∣
∣
∣
∣
∣∣a+1abcab+1bcabc+1c∣∣
∣
∣
∣
∣
∣∣
Δ=∣∣
∣
∣∣a2+1b2c2a2b2+1c2a2b2c2+1∣∣
∣
∣∣
Applying C1→C1+C2+C3
Δ=∣∣
∣
∣∣1+a2+b2+c2b2c21+a2+b2+c2b2+1c21+a2+b2+c2b2c2+1∣∣
∣
∣∣
Δ=(1+a2+b2+c2)∣∣
∣
∣∣1b2c21b2+1c21b2c2+1∣∣
∣
∣∣
Applying R2→R2−R1 and R3→R3−R1
Δ=(1+a2+b2+c2)∣∣
∣∣1b2c2010001∣∣
∣∣
Expanding along C1, we get
Δ=(1+a2+b2+c2)∣∣∣1001∣∣∣
=a2+b2+c2+1= R.H.S.